On Orthogonal Polynomials with Respect to Varying Measures on the Unit Circle
نویسنده
چکیده
Let {4>„{dfi)} be a system of orthonormal polynomials on the unit circle with respect to d/i and {y/„,m(dß)} be a system of orthonormal polynomials on the unit circle with respect to the varying measures dß/\wn(z)\2, z = e'e , where {w„(z)} is a sequence of polynomials, degw« = n , whose zeros w„ i, ... , wn,n lie in \z\ < 1 The asymptotic behavior of the ratio of the two systems on and outside the unit circle is obtained.
منابع مشابه
Remarks on Orthogonal Polynomials with Respect to Varying Measures and Related Problems
We point out the relation between the orthogonal polynomials with respect to (w.r.t.) varying measures and the so-called orthogonal rationals on the unit circle in the complex plane. This observation enables us to combine different techniques in the study of these polynomials and rationals. As an example, we present a simple and short proof for a known result on the weak-star convergence of ort...
متن کاملStrong asymptotics of orthogonal polynomials with varying measures and Hermite–Pad e approximants
The strong asymptotic behaviour of orthogonal polynomials with respect to a general class of varying measures is given for the case of the unit circle and the real line. These results are used to obtain certain asymptotic relations for the polynomials involved in the construction of Hermite–Pad e approximants of a Nikishin system of functions. c © 1998 Elsevier Science B.V. All rights reserved....
متن کاملMatrix measures on the unit circle, moment spaces, orthogonal polynomials and the Geronimus relations
We study the moment space corresponding to matrix measures on the unit circle. Moment points are characterized by non-negative definiteness of block Toeplitz matrices. This characterization is used to derive an explicit representation of orthogonal polynomials with respect to matrix measures on the unit circle and to present a geometric definition of canonical moments. It is demonstrated that t...
متن کاملRatio and relative asymptotics of polynomials orthogonal with respect to varying Denisov-type measures
Let be a finite positive Borel measure with compact support consisting of an interval [c, d] ⊂ R plus a set of isolated points in R\[c, d], such that ′> 0 almost everywhere on [c, d]. Let {w2n}, n ∈ Z+, be a sequence of polynomials, degw2n 2n, with real coefficients whose zeros lie outside the smallest interval containing the support of . We prove ratio and relative asymptotics of sequences of ...
متن کاملElliptic polynomials orthogonal on the unit circle with respect to a singular continuous measure
We introduce two explicit examples of polynomials orthogonal on the unit circle. Moments and the reflection coefficients are expressed in terms of Jacobi elliptic functions. We find explicit expression for these polynomials in terms of a new type of elliptic hypergeometric function. We show that obtained polynomials are orthogonal on the unit circle with respect to a positive measure which is s...
متن کامل